摘要:塔式(shi)太陽能光熱(re)發電站中,熔(rong)鹽儲罐(guan)是工(gong)程(cheng)的(de)重要(yao)組成(cheng)部分,其設計(ji)(ji)(ji)方案(an)對(dui)工(gong)程(cheng)成(cheng)本(ben)影響巨大,從價(jia)值工(gong)程(cheng)的(de)角度(du),對(dui)其進行合理(li)的(de)優化設計(ji)(ji)(ji)具有(you)重要(yao)意義(yi)。通過青海某光熱(re)項(xiang)目實踐(jian),在(zai)對(dui)已建(jian)項(xiang)目熔(rong)鹽儲罐(guan)設計(ji)(ji)(ji)方案(an)分析(xi)研究的(de)基礎上,從降低熔(rong)鹽儲罐(guan)死液位下冗余設計(ji)(ji)(ji)的(de)角度(du),提出了(le)多種設計(ji)(ji)(ji)優化方案(an),能夠有(you)效降低此(ci)類工(gong)程(cheng)的(de)建(jian)設成(cheng)本(ben)。
關鍵詞:塔式光熱電站;熔(rong)鹽儲熱系統(tong);設計優(you)化
前言
隨(sui)著國家“雙碳(tan)”戰略目標的(de)提出,中(zhong)國正在加速構建新型電(dian)力(li)(li)系統。作為(wei)一種清(qing)潔電(dian)力(li)(li)以(yi)及有效解決新能源(yuan)發電(dian)波動(dong)性問題的(de)成(cheng)熟路徑,太(tai)陽能光(guang)(guang)熱(re)(re)發電(dian)成(cheng)為(wei)國內(nei)電(dian)力(li)(li)行業發展的(de)新方向。太(tai)陽能光(guang)(guang)熱(re)(re)發電(dian)站(見圖1)是通過(guo)(guo)聚光(guang)(guang)集(ji)熱(re)(re)系統捕獲并(bing)聚集(ji)太(tai)陽能后(hou)傳熱(re)(re)至(zhi)高(gao)溫(wen)熱(re)(re)流(liu)體,再通過(guo)(guo)熔鹽(yan)儲熱(re)(re)系統和換熱(re)(re)系統傳熱(re)(re)至(zhi)高(gao)溫(wen)高(gao)壓蒸(zheng)汽(qi)(qi),從而驅動(dong)傳統汽(qi)(qi)輪機(ji)來(lai)發電(dian),具有可(ke)儲熱(re)(re)、可(ke)調峰、可(ke)穩定輸(shu)出和可(ke)非(fei)日(ri)照時發電(dian)等(deng)優(you)點。
圖(tu) 1 某塔式光熱電站實景
熔(rong)(rong)鹽儲(chu)(chu)(chu)熱(re)(re)(re)(re)系統是(shi)塔式光(guang)(guang)熱(re)(re)(re)(re)電(dian)(dian)站關鍵環節之一(yi),能有(you)效(xiao)的(de)(de)提(ti)供能量在時(shi)間上的(de)(de)延遲供給,保障系統的(de)(de)有(you)效(xiao)運行,其對(dui)整個光(guang)(guang)熱(re)(re)(re)(re)發(fa)電(dian)(dian)項目(mu)的(de)(de)工程成本、安全及可靠運行影響極(ji)大(da)。目(mu)前(qian)(qian)國(guo)內現(xian)有(you)熔(rong)(rong)鹽儲(chu)(chu)(chu)熱(re)(re)(re)(re)系統的(de)(de)研究(jiu)(jiu)成果中(zhong),對(dui)于(yu)熔(rong)(rong)鹽儲(chu)(chu)(chu)罐基礎(chu)設(she)(she)(she)計(ji)(ji)、結(jie)構強度分(fen)析(xi)、溫度場(chang)分(fen)析(xi)、散熱(re)(re)(re)(re)損失(shi)分(fen)析(xi)和建造(zao)質(zhi)量管理方(fang)(fang)面的(de)(de)研究(jiu)(jiu)成果較多,對(dui)于(yu)儲(chu)(chu)(chu)罐方(fang)(fang)案和體型的(de)(de)創新和優化研究(jiu)(jiu)目(mu)前(qian)(qian)尚未(wei)涉(she)及。本文(wen)通(tong)過(guo)青(qing)海(hai)某(mou)光(guang)(guang)熱(re)(re)(re)(re)項目(mu)實踐,在對(dui)已建項目(mu)熔(rong)(rong)鹽儲(chu)(chu)(chu)罐設(she)(she)(she)計(ji)(ji)方(fang)(fang)案分(fen)析(xi)研究(jiu)(jiu)的(de)(de)基礎(chu)上,從降低熔(rong)(rong)鹽儲(chu)(chu)(chu)罐死液位下冗余(yu)設(she)(she)(she)計(ji)(ji)的(de)(de)角度,提(ti)出(chu)多種設(she)(she)(she)計(ji)(ji)優化方(fang)(fang)案,為有(you)效(xiao)降低此類工程建設(she)(she)(she)成本提(ti)供借鑒。
1、儲罐概況
調研青海某光熱(re)(re)(re)項目(見(jian)圖2)和其它國內已建光熱(re)(re)(re)項目熔(rong)(rong)(rong)(rong)鹽(yan)(yan)(yan)儲罐(guan)(guan)(guan)典型設(she)計(ji)方案(an)(an)發(fa)現,目前(qian)國內主流(liu)儲熱(re)(re)(re)系統(tong)設(she)計(ji)采用高(gao)/低(di)(di)(di)溫(wen)熔(rong)(rong)(rong)(rong)鹽(yan)(yan)(yan)儲罐(guan)(guan)(guan)的雙(shuang)罐(guan)(guan)(guan)設(she)計(ji)方案(an)(an)。低(di)(di)(di)溫(wen)熔(rong)(rong)(rong)(rong)鹽(yan)(yan)(yan)從低(di)(di)(di)溫(wen)熔(rong)(rong)(rong)(rong)鹽(yan)(yan)(yan)罐(guan)(guan)(guan)中通過熔(rong)(rong)(rong)(rong)鹽(yan)(yan)(yan)泵抽送(song)至吸熱(re)(re)(re)器中,吸收熱(re)(re)(re)量變為高(gao)溫(wen)熔(rong)(rong)(rong)(rong)鹽(yan)(yan)(yan)后,進(jin)入高(gao)溫(wen)熔(rong)(rong)(rong)(rong)鹽(yan)(yan)(yan)罐(guan)(guan)(guan)中儲存,發(fa)電時通過高(gao)溫(wen)熔(rong)(rong)(rong)(rong)鹽(yan)(yan)(yan)泵送(song)至換(huan)熱(re)(re)(re)系統(tong),與汽水進(jin)行換(huan)熱(re)(re)(re)后,溫(wen)度降低(di)(di)(di)變為低(di)(di)(di)溫(wen)熔(rong)(rong)(rong)(rong)鹽(yan)(yan)(yan),進(jin)入到低(di)(di)(di)溫(wen)熔(rong)(rong)(rong)(rong)鹽(yan)(yan)(yan)儲罐(guan)(guan)(guan)儲存。通過高(gao)溫(wen)與低(di)(di)(di)溫(wen)儲罐(guan)(guan)(guan)間(jian)的熔(rong)(rong)(rong)(rong)鹽(yan)(yan)(yan)循環往復(fu)流(liu)動,實現儲熱(re)(re)(re)和放(fang)熱(re)(re)(re)功能。儲熱(re)(re)(re)系統(tong)如圖3所(suo)示。
圖 2 某塔式(shi)光熱電站熔鹽儲熱系統建(jian)設實景
圖(tu) 3 塔式光熱電站熔鹽(yan)儲(chu)熱系統(tong)
由于(yu)熔(rong)(rong)(rong)鹽(yan)儲罐(guan)底(di)部采用近似(si)平底(di)設計(ji),熔(rong)(rong)(rong)鹽(yan)泵下插至罐(guan)底(di)時須預留0.5~1.0 m不(bu)等的(de)最(zui)低(di)操作液位(wei),此液位(wei)以下的(de)熔(rong)(rong)(rong)鹽(yan)不(bu)能充分參與系統循環(huan),處于(yu)無功(gong)效狀態。對于(yu)裝機規(gui)模達到100 MW及(ji)以上的(de)塔式(shi)光熱電站(zhan),熔(rong)(rong)(rong)鹽(yan)儲罐(guan)往(wang)往(wang)體積(ji)很大,直(zhi)徑30~50 m,熔(rong)(rong)(rong)鹽(yan)儲量過萬噸,成本過億,儲罐(guan)死(si)液位(wei)占用了熔(rong)(rong)(rong)鹽(yan)儲熱系統的(de)工程成本,對造價(jia)影響大。
從價值工程(cheng)原理講,在(zai)確(que)保(bao)功能不(bu)變的(de)(de)(de)(de)前提(ti)(ti)下減少成(cheng)本,是實(shi)現價值提(ti)(ti)高的(de)(de)(de)(de)有效途徑,有必要對(dui)(dui)熔(rong)鹽儲(chu)(chu)罐的(de)(de)(de)(de)設(she)(she)計方(fang)案(an)優(you)化給予足夠(gou)的(de)(de)(de)(de)重視。本文通(tong)過青海(hai)某(mou)國家(jia)示范性光熱項(xiang)目實(shi)踐,對(dui)(dui)已建項(xiang)目熔(rong)鹽儲(chu)(chu)罐設(she)(she)計方(fang)案(an)進(jin)行了(le)分析,從降低熔(rong)鹽儲(chu)(chu)罐最(zui)低操作液位的(de)(de)(de)(de)角度,創新(xin)和(he)優(you)化熔(rong)鹽儲(chu)(chu)罐設(she)(she)計方(fang)案(an),減少工程(cheng)熔(rong)鹽用量,以降低工程(cheng)建設(she)(she)成(cheng)本,提(ti)(ti)升系統價值,經濟(ji)效益(yi)顯著(zhu)。
2、典型項目優化流程
以某裝(zhuang)機容量為(wei)100 MW的典型塔(ta)式太陽能光熱發電站(zhan)為(wei)研究對象,引入PDCA管理循環的工作(zuo)
程序,開展熔(rong)鹽(yan)儲罐的設計(ji)優(you)(you)化探(tan)討(tao)。PDCA設計(ji)優(you)(you)化循環分Plan、Do、Check和Ac鄄tion 4個(ge)階段和8個(ge)事項,按照順序依(yi)次開展工作,PDCA設計(ji)優(you)(you)化循環如圖4所示。
圖 4 PDCA 設計優化循環(huan)
將此循(xun)環流程應用在研究項目熔(rong)鹽儲熱系統設(she)計優(you)化上,具體過(guo)程詳(xiang)見表1。
3、設計優化方案對比
二(er)元(yuan)(yuan)熔(rong)(rong)(rong)(rong)鹽(yan)(yan)(yan)(yan)(yan)和高、低(di)溫(wen)(wen)(wen)(wen)熔(rong)(rong)(rong)(rong)鹽(yan)(yan)(yan)(yan)(yan)儲(chu)(chu)(chu)(chu)罐(guan)(guan)(guan)是熔(rong)(rong)(rong)(rong)鹽(yan)(yan)(yan)(yan)(yan)儲(chu)(chu)(chu)(chu)熱(re)系統成(cheng)本(ben)最(zui)重(zhong)要的(de)組成(cheng)部(bu)分,是降低(di)系統成(cheng)本(ben)和實現(xian)價值的(de)關鍵。研究項目(mu)(mu)高、低(di)溫(wen)(wen)(wen)(wen)熔(rong)(rong)(rong)(rong)鹽(yan)(yan)(yan)(yan)(yan)儲(chu)(chu)(chu)(chu)罐(guan)(guan)(guan)罐(guan)(guan)(guan)壁高度均為15 m,熔(rong)(rong)(rong)(rong)鹽(yan)(yan)(yan)(yan)(yan)高度均為13.65 m。低(di)溫(wen)(wen)(wen)(wen)熔(rong)(rong)(rong)(rong)鹽(yan)(yan)(yan)(yan)(yan)儲(chu)(chu)(chu)(chu)罐(guan)(guan)(guan)直徑為35.5 m,最(zui)低(di)操作(zuo)(zuo)液(ye)位(wei)0.75 m,高溫(wen)(wen)(wen)(wen)熔(rong)(rong)(rong)(rong)鹽(yan)(yan)(yan)(yan)(yan)儲(chu)(chu)(chu)(chu)罐(guan)(guan)(guan)直徑為36.6 m,最(zui)低(di)操作(zuo)(zuo)液(ye)位(wei)0.5 m。依據(ju)PD鄄CA設計優化(hua)循環流程,以典型(xing)(xing)塔(ta)式太(tai)陽能光(guang)熱(re)發(fa)電站主(zhu)流熔(rong)(rong)(rong)(rong)鹽(yan)(yan)(yan)(yan)(yan)儲(chu)(chu)(chu)(chu)罐(guan)(guan)(guan)系統設計方案(an)為基礎,從改(gai)變罐(guan)(guan)(guan)底體型(xing)(xing)以降低(di)最(zui)低(di)操作(zuo)(zuo)液(ye)位(wei)角度進行(xing)創新(xin),以典型(xing)(xing)塔(ta)式太(tai)陽能光(guang)熱(re)發(fa)電站主(zhu)流熔(rong)(rong)(rong)(rong)鹽(yan)(yan)(yan)(yan)(yan)儲(chu)(chu)(chu)(chu)罐(guan)(guan)(guan)系統設計方案(an)為基礎,提(ti)出4種(zhong)不同(tong)技術路線的(de)優化(hua)方案(an)。研究項目(mu)(mu)常規設計方案(an)二(er)元(yuan)(yuan)熔(rong)(rong)(rong)(rong)鹽(yan)(yan)(yan)(yan)(yan)用(yong)量(liang)26 000 t,二(er)元(yuan)(yuan)熔(rong)(rong)(rong)(rong)鹽(yan)(yan)(yan)(yan)(yan)單價按6 700元(yuan)(yuan)/t計算,二(er)元(yuan)(yuan)熔(rong)(rong)(rong)(rong)鹽(yan)(yan)(yan)(yan)(yan)總(zong)成(cheng)本(ben)1.742億元(yuan)(yuan)。低(di)溫(wen)(wen)(wen)(wen)熔(rong)(rong)(rong)(rong)鹽(yan)(yan)(yan)(yan)(yan)儲(chu)(chu)(chu)(chu)罐(guan)(guan)(guan)1臺(tai),成(cheng)本(ben)3 500萬元(yuan)(yuan);高溫(wen)(wen)(wen)(wen)熔(rong)(rong)(rong)(rong)鹽(yan)(yan)(yan)(yan)(yan)儲(chu)(chu)(chu)(chu)罐(guan)(guan)(guan)1臺(tai),成(cheng)本(ben)5 900萬元(yuan)(yuan)/臺(tai)。由于最(zui)低(di)操作(zuo)(zuo)液(ye)位(wei)以下(xia)熔(rong)(rong)(rong)(rong)鹽(yan)(yan)(yan)(yan)(yan)未有效進行(xing)系統循環,此部(bu)分熔(rong)(rong)(rong)(rong)鹽(yan)(yan)(yan)(yan)(yan)用(yong)量(liang)高達2 320 t,4種(zhong)方案(an)(見圖5)以不同(tong)的(de)罐(guan)(guan)(guan)底體型(xing)(xing)進行(xing)了設計優化(hua),將操作(zuo)(zuo)液(ye)位(wei)控制在(zai)局部(bu)體型(xing)(xing)范圍內,從而減少了系統二(er)元(yuan)(yuan)熔(rong)(rong)(rong)(rong)鹽(yan)(yan)(yan)(yan)(yan)總(zong)用(yong)量(liang)。
圖(tu) 5 熔鹽儲熱(re)系(xi)統設計 4 種優化方案
方案1:多(duo)點(dian)(dian)局(ju)部下(xia)(xia)沉(chen)設計。考慮(lv)最(zui)低(di)(di)操(cao)作液位要求,將儲罐底(di)部設計為(wei)多(duo)點(dian)(dian)局(ju)部下(xia)(xia)沉(chen)結構(gou)。即在每個(ge)熔鹽(yan)泵與(yu)儲罐底(di)部配合位置設計局(ju)部下(xia)(xia)沉(chen)結構(gou),各(ge)個(ge)熔鹽(yan)泵對應的(de)(de)下(xia)(xia)沉(chen)結構(gou)互相獨立(li),各(ge)泵對應點(dian)(dian)的(de)(de)下(xia)(xia)沉(chen)高度以滿足(zu)最(zui)低(di)(di)操(cao)作液位要求為(wei)原則,下(xia)(xia)沉(chen)平面(mian)布置以泵軸為(wei)中心局(ju)部擴大,為(wei)泵正常工作和熔鹽(yan)回流預(yu)留足(zu)夠(gou)空間,多(duo)點(dian)(dian)下(xia)(xia)沉(chen)結構(gou)之間互不聯通。
方(fang)案(an)2:連(lian)通凹槽下(xia)沉(chen)設計。考慮最低操(cao)作液位要(yao)求和(he)熔(rong)鹽流動性需求,將(jiang)儲罐底部設計為連(lian)通凹槽下(xia)沉(chen)結構。即在每個熔(rong)鹽泵(beng)(beng)與儲罐底部配(pei)合位置設計下(xia)沉(chen)結構,各下(xia)沉(chen)式結構之間相互連(lian)通。連(lian)通凹槽各個泵(beng)(beng)對應點的下(xia)沉(chen)高度以滿足最低操(cao)作液位要(yao)求為原則(ze),平面上(shang)以泵(beng)(beng)軸為中心(xin)局部擴(kuo)大,熔(rong)鹽可在連(lian)通凹槽之間相互流動。
方案3:局(ju)部(bu)漸(jian)變下(xia)沉設計(ji)。考慮最低操(cao)作(zuo)液(ye)位要求和儲罐(guan)結構體型的平滑過渡需求,將儲罐(guan)底部(bu)與熔(rong)鹽(yan)泵對接(jie)區(qu)域設計(ji)為局(ju)部(bu)漸(jian)變式下(xia)沉結構,每(mei)個熔(rong)鹽(yan)泵與儲罐(guan)底部(bu)配(pei)合位置均位于漸(jian)變式下(xia)沉結構的深(shen)液(ye)位區(qu),高(gao)低液(ye)位區(qu)之間采用(yong)平滑過渡,熔(rong)鹽(yan)可從高(gao)液(ye)位區(qu)流動到(dao)低液(ye)位區(qu),再被各(ge)熔(rong)鹽(yan)泵從罐(guan)內抽出至其它各(ge)系(xi)統(tong)。
方案4:罐(guan)(guan)外(wai)下沉小罐(guan)(guan)設(she)計。考(kao)慮熔(rong)鹽(yan)(yan)儲(chu)(chu)罐(guan)(guan)直徑(jing)大,為降低罐(guan)(guan)底(di)最低操作液位以下熔(rong)鹽(yan)(yan)的浪費,熔(rong)鹽(yan)(yan)儲(chu)(chu)熱(re)系統在高(gao)、低溫(wen)熔(rong)鹽(yan)(yan)儲(chu)(chu)罐(guan)(guan)外(wai)增設(she)下沉小罐(guan)(guan),高(gao)、低溫(wen)熔(rong)鹽(yan)(yan)儲(chu)(chu)罐(guan)(guan)與下沉小罐(guan)(guan)之間結構獨立(li)但通(tong)過底(di)部管路連(lian)通(tong),系統循環(huan)時,使熔(rong)鹽(yan)(yan)先流出(chu)至(zhi)小罐(guan)(guan),再從(cong)小罐(guan)(guan)內用泵抽(chou)出(chu)至(zhi)其(qi)它各系統。
總體而言,方(fang)案(an)(an)1~4通過不同(tong)(tong)的(de)(de)(de)(de)(de)方(fang)式(shi),降低了常規(gui)設(she)(she)計(ji)(ji)方(fang)案(an)(an)熔(rong)鹽儲(chu)(chu)(chu)罐最低操作液位(wei)以下的(de)(de)(de)(de)(de)冗(rong)余熔(rong)鹽,節(jie)省(sheng)二元熔(rong)鹽的(de)(de)(de)(de)(de)總用(yong)量(liang),降低熔(rong)鹽儲(chu)(chu)(chu)罐的(de)(de)(de)(de)(de)整體高度,從而節(jie)省(sheng)了工程成本(ben)(ben)。與常規(gui)設(she)(she)計(ji)(ji)方(fang)案(an)(an)對(dui)比,方(fang)案(an)(an)1~3均采用(yong)儲(chu)(chu)(chu)罐底(di)板下沉(chen)(chen)式(shi)設(she)(she)計(ji)(ji)的(de)(de)(de)(de)(de)思路(lu),由于技(ji)術(shu)(shu)路(lu)線的(de)(de)(de)(de)(de)差(cha)異,一方(fang)面會(hui)引起節(jie)省(sheng)熔(rong)鹽用(yong)量(liang)和(he)熔(rong)鹽儲(chu)(chu)(chu)罐成本(ben)(ben)的(de)(de)(de)(de)(de)不同(tong)(tong);另一方(fang)面,不同(tong)(tong)的(de)(de)(de)(de)(de)下沉(chen)(chen)結構,對(dui)應(ying)(ying)熔(rong)鹽儲(chu)(chu)(chu)罐底(di)板在下沉(chen)(chen)位(wei)置的(de)(de)(de)(de)(de)流動性(xing)和(he)適應(ying)(ying)溫度變化(hua)能力會(hui)有所不同(tong)(tong)。方(fang)案(an)(an)4采用(yong)的(de)(de)(de)(de)(de)罐外下沉(chen)(chen)小罐設(she)(she)計(ji)(ji)理念,能夠避免熔(rong)鹽儲(chu)(chu)(chu)罐底(di)板的(de)(de)(de)(de)(de)下沉(chen)(chen)設(she)(she)計(ji)(ji),但會(hui)額外增加(jia)小罐的(de)(de)(de)(de)(de)成本(ben)(ben)和(he)附屬管(guan)路(lu),但會(hui)減(jian)少熔(rong)鹽泵的(de)(de)(de)(de)(de)成本(ben)(ben)。為全(quan)面反映以上4種優(you)化(hua)方(fang)案(an)(an)在經濟(ji)和(he)技(ji)術(shu)(shu)上與常規(gui)設(she)(she)計(ji)(ji)方(fang)案(an)(an)的(de)(de)(de)(de)(de)區別,將優(you)化(hua)方(fang)案(an)(an)與常規(gui)設(she)(she)計(ji)(ji)技(ji)術(shu)(shu)經濟(ji)對(dui)比分析,具體見表2。
從對(dui)比結果(guo)可知,4種(zhong)方(fang)(fang)(fang)案(an)(an)可節省研究(jiu)項目(mu)熔(rong)(rong)鹽(yan)(yan)儲(chu)熱(re)系統成本分布在1 322萬~1 761萬元(yuan),經濟效(xiao)益顯著。從節省成本的(de)角度講,方(fang)(fang)(fang)案(an)(an)1最佳(jia),方(fang)(fang)(fang)案(an)(an)2次(ci)之,方(fang)(fang)(fang)案(an)(an)3再次(ci)之,方(fang)(fang)(fang)案(an)(an)4一(yi)(yi)般;從罐底熔(rong)(rong)鹽(yan)(yan)的(de)流(liu)動性講,方(fang)(fang)(fang)案(an)(an)3和方(fang)(fang)(fang)案(an)(an)4最佳(jia),方(fang)(fang)(fang)案(an)(an)2次(ci)之,方(fang)(fang)(fang)案(an)(an)1一(yi)(yi)般;從熔(rong)(rong)鹽(yan)(yan)儲(chu)罐底部對(dui)溫度變化的(de)適應性講,方(fang)(fang)(fang)案(an)(an)3最佳(jia),方(fang)(fang)(fang)案(an)(an)2次(ci)之,方(fang)(fang)(fang)案(an)(an)1和方(fang)(fang)(fang)案(an)(an)4一(yi)(yi)般。總(zong)之,4種(zhong)方(fang)(fang)(fang)案(an)(an)從不同的(de)技術路徑,創新了熔(rong)(rong)鹽(yan)(yan)儲(chu)熱(re)系統,與(yu)常規設(she)計方(fang)(fang)(fang)案(an)(an)對(dui)比各有其特點,但均(jun)能(neng)夠有效(xiao)減少項目(mu)二(er)元(yuan)熔(rong)(rong)鹽(yan)(yan)用量和降低項目(mu)的(de)建設(she)成本。
4、結論
熔(rong)(rong)(rong)鹽儲罐(guan)(guan)的(de)設(she)計(ji)方(fang)案對(dui)塔式太陽能光(guang)熱(re)(re)發(fa)電站的(de)工(gong)(gong)程成(cheng)本影響巨大(da),從價值工(gong)(gong)程的(de)角(jiao)度,對(dui)其進行(xing)合理(li)的(de)優化設(she)計(ji),具(ju)有重要意義。本文從降(jiang)低(di)熔(rong)(rong)(rong)鹽儲罐(guan)(guan)最低(di)操作液(ye)位(wei)的(de)角(jiao)度,創新和優化了熔(rong)(rong)(rong)鹽儲罐(guan)(guan)設(she)計(ji)方(fang)案,能夠減少(shao)工(gong)(gong)程熔(rong)(rong)(rong)鹽用(yong)量、降(jiang)低(di)建(jian)(jian)設(she)成(cheng)本、提升系統價值,經濟效益顯著,可為后續類似(si)光(guang)熱(re)(re)項目熔(rong)(rong)(rong)鹽儲罐(guan)(guan)的(de)建(jian)(jian)設(she)提供參(can)考(kao)。主要結論(lun)如(ru)下:
(1)通過引入了PDCA管理循(xun)環(huan)的(de)工(gong)作程序,從減少熔鹽儲罐最低(di)操作液位的(de)角度提(ti)出了設(she)(she)計(ji)優化思路(lu)。以典型塔式(shi)太陽(yang)能光熱發電站主流熔鹽儲罐系統設(she)(she)計(ji)方案為基礎,從改變(bian)罐底局部體型的(de)角度提(ti)4種(zhong)不同的(de)優化設(she)(she)計(ji)方案。
(2)優(you)化(hua)方(fang)(fang)案對熔(rong)鹽泵處(chu)罐(guan)(guan)底局(ju)部(bu)體型進行了創(chuang)新(xin),以局(ju)部(bu)空間的改變(bian)適應(ying)熔(rong)鹽泵最(zui)低操作(zuo)液位的要(yao)求,從(cong)而避免罐(guan)(guan)底整(zheng)體空間因適應(ying)最(zui)低操作(zuo)液位要(yao)求造成的設計冗余。從(cong)節省成本、罐(guan)(guan)底熔(rong)鹽流動性和溫度變(bian)化(hua)適應(ying)性方(fang)(fang)面(mian),推(tui)薦(jian)方(fang)(fang)案3。
此(ci)次開展的(de)(de)塔式光熱(re)電站熔(rong)鹽(yan)儲熱(re)系統設計優(you)化(hua)理念(nian)探討成果具有顯著(zhu)的(de)(de)技術經(jing)濟(ji)效(xiao)益,能夠有效(xiao)降低此(ci)類(lei)工程的(de)(de)建設成本,對(dui)于(yu)類(lei)似項目的(de)(de)設計優(you)化(hua)及管理工作具有一定的(de)(de)指導意義。
作者:許(xu)立(li)國,祁林攀,沈(shen)亞軍,戴雨(yu)薇