研究背景
能(neng)源(yuan)(yuan)短缺與環境污染是影(ying)響國(guo)民(min)經濟(ji)可(ke)持續發展(zhan)(zhan)的(de)兩大(da)關鍵問題。利(li)(li)用(yong)(yong)新型可(ke)再生(sheng)能(neng)源(yuan)(yuan)技術,實(shi)現(xian)(xian)產能(neng)升級與碳排放的(de)減(jian)少,逐漸成為世界范圍(wei)內的(de)廣(guang)泛(fan)共識。在眾(zhong)多可(ke)再生(sheng)能(neng)源(yuan)(yuan)技術當中,利(li)(li)用(yong)(yong)太陽能(neng)進行(xing)能(neng)源(yuan)(yuan)轉化(hua)制取太陽燃(ran)料,是一(yi)件(jian)極具挑戰(zhan)性(xing)且有前景(jing)的(de)能(neng)源(yuan)(yuan)技術。CO2與CH4是典型的(de)溫室氣(qi)體及(ji)重要的(de)含碳資(zi)源(yuan)(yuan),將二者作為碳源(yuan)(yuan),并(bing)在太陽能(neng)的(de)輸入(ru)條件(jian)下(xia),轉化(hua)為化(hua)學品,既能(neng)夠循環利(li)(li)用(yong)(yong)CO2實(shi)現(xian)(xian)節能(neng)減(jian)排,也能(neng)夠完成太陽能(neng)源(yuan)(yuan)的(de)存儲與提質增效,符合我國(guo)構建清潔、高效、安全、可(ke)持續的(de)現(xian)(xian)代能(neng)源(yuan)(yuan)體系發展(zhan)(zhan)規劃的(de)要求(qiu)。
利用太陽能(neng)(neng)(neng)光(guang)熱(re)化(hua)(hua)(hua)(hua)學(xue)轉(zhuan)(zhuan)化(hua)(hua)(hua)(hua)技術實現太陽燃料(liao)的(de)(de)(de)生產,其目前存(cun)在(zai)(zai)的(de)(de)(de)關(guan)鍵瓶頸問(wen)題(ti)在(zai)(zai)于(yu)微觀(guan)反應(ying)(ying)界面的(de)(de)(de)能(neng)(neng)(neng)質轉(zhuan)(zhuan)化(hua)(hua)(hua)(hua)機理(li)不清(qing)、全(quan)光(guang)譜驅動的(de)(de)(de)物質活化(hua)(hua)(hua)(hua)-重(zhong)構機理(li)與(yu)(yu)動力學(xue)特(te)性不明、以及(ji)適配(pei)于(yu)太陽能(neng)(neng)(neng)直接(jie)驅動光(guang)熱(re)化(hua)(hua)(hua)(hua)學(xue)轉(zhuan)(zhuan)化(hua)(hua)(hua)(hua)的(de)(de)(de)新型反應(ying)(ying)器(qi)設計不足。針對上述問(wen)題(ti),課(ke)題(ti)組從新型催化(hua)(hua)(hua)(hua)材(cai)料(liao)研發-反應(ying)(ying)機理(li)與(yu)(yu)動力學(xue)特(te)性解(jie)析-高效反應(ying)(ying)裝置設計優化(hua)(hua)(hua)(hua)的(de)(de)(de)角度出發開展研究,旨(zhi)在(zai)(zai)提升太陽能(neng)(neng)(neng)光(guang)熱(re)化(hua)(hua)(hua)(hua)學(xue)轉(zhuan)(zhuan)化(hua)(hua)(hua)(hua)過(guo)程的(de)(de)(de)能(neng)(neng)(neng)量物質轉(zhuan)(zhuan)化(hua)(hua)(hua)(hua)效率,從而(er)為甲(jia)烷干重(zhong)整制(zhi)合(he)成氣、CO2加氫還原等重(zhong)要(yao)能(neng)(neng)(neng)源化(hua)(hua)(hua)(hua)工過(guo)程的(de)(de)(de)經濟高效轉(zhuan)(zhuan)化(hua)(hua)(hua)(hua)與(yu)(yu)系統安全(quan)穩(wen)定運行(xing)奠定理(li)論技術基礎。本文重(zhong)點(dian)介紹課(ke)題(ti)組在(zai)(zai)太陽能(neng)(neng)(neng)光(guang)熱(re)化(hua)(hua)(hua)(hua)學(xue)轉(zhuan)(zhuan)化(hua)(hua)(hua)(hua)領(ling)域的(de)(de)(de)研究進展。
研究成果
研究成果1:全光譜“光熱協同”體系能質轉化機理
以往研究中,太陽(yang)能(neng)(neng)驅動的(de)光熱化(hua)(hua)學反應,多采用太陽(yang)能(neng)(neng)供熱-熱催化(hua)(hua)轉(zhuan)化(hua)(hua)的(de)方式,實現CO2、CH4等物質的(de)轉(zhuan)化(hua)(hua),但因未(wei)改變催化(hua)(hua)反應原理,其仍然面臨著(zhu)分子活化(hua)(hua)困難、反應溫度高(gao)、能(neng)(neng)量轉(zhuan)化(hua)(hua)效(xiao)率(lv)低、催化(hua)(hua)劑(ji)易積碳失活等問題。
對(dui)此,課題組(zu)從“光(guang)(guang)熱(re)協(xie)同”催(cui)化(hua)(hua)反應(ying)原(yuan)理(li)出發(fa),構建了Ni/介(jie)孔氧(yang)化(hua)(hua)鈦、Pt/介(jie)孔氧(yang)化(hua)(hua)鈦、Pt/P25、Ru/CeO2等系(xi)列活性(xing)金(jin)屬(shu)(shu)/半(ban)導體(ti)氧(yang)化(hua)(hua)物“光(guang)(guang)熱(re)協(xie)同”催(cui)化(hua)(hua)體(ti)系(xi),并(bing)探索其在全(quan)光(guang)(guang)譜(pu)太(tai)陽能驅動下的微觀能質反應(ying)轉化(hua)(hua)機理(li)。課題組(zu)研究(jiu)表明半(ban)導體(ti)載體(ti)的光(guang)(guang)響應(ying)能力可(ke)在太(tai)陽能照射下激發(fa)電(dian)(dian)(dian)子(zi)(zi)-空穴;而(er)活性(xing)金(jin)屬(shu)(shu)/氧(yang)化(hua)(hua)物的金(jin)屬(shu)(shu)載體(ti)強(qiang)(qiang)相(xiang)互(hu)作(zuo)用(yong)可(ke)在拓寬光(guang)(guang)譜(pu)響應(ying)范圍的同時,進一步強(qiang)(qiang)化(hua)(hua)電(dian)(dian)(dian)子(zi)(zi)-空穴分(fen)離;光(guang)(guang)激發(fa)電(dian)(dian)(dian)子(zi)(zi)可(ke)通過界面(mian)遷移(yi)至(zhi)金(jin)屬(shu)(shu)活性(xing)位點,形成(cheng)富電(dian)(dian)(dian)子(zi)(zi)結(jie)構從而(er)強(qiang)(qiang)化(hua)(hua)反應(ying)物吸附活化(hua)(hua)特性(xing),從而(er)大幅提升CO2、CH4催(cui)化(hua)(hua)活性(xing)。與熱(re)化(hua)(hua)學轉化(hua)(hua)工藝相(xiang)比,同等條件的全(quan)光(guang)(guang)譜(pu)光(guang)(guang)熱(re)協(xie)同催(cui)化(hua)(hua),可(ke)實現CO/H2生成(cheng)速(su)率提高(gao)(gao)1.4~1.8倍,CO2/CH4轉化(hua)(hua)率提高(gao)(gao)20%~40%,展現出很(hen)好的應(ying)用(yong)前景(Chemical Engineering Journal,2022,429:132507;Energy Conversion and Management,2022,258:115496;Chemical Engineering Science,2023,274,118710)。
圖1全光譜“光熱協同”催化體(ti)系開(kai)發
為(wei)了強化(hua)太陽光(guang)譜(pu)的(de)(de)利(li)用(yong)效率,課題組(zu)還進(jin)一(yi)步(bu)耦(ou)合(he)納米Au顆粒在特(te)定波長下(xia)的(de)(de)等(deng)離激元共振效應,實現催化(hua)材(cai)料對光(guang)譜(pu)響應能力的(de)(de)進(jin)一(yi)步(bu)拓(tuo)展(zhan);利(li)用(yong)肖特(te)基結金屬-載體相(xiang)互作(zuo)用(yong)強化(hua)光(guang)激發電子(zi)-空穴的(de)(de)有(you)效分離;并利(li)用(yong)全光(guang)譜(pu)誘導的(de)(de)光(guang)電子(zi)-熱電子(zi)共同耦(ou)合(he)強化(hua)表面(mian)吸附物種的(de)(de)解離轉(zhuan)化(hua)等(deng)策略,從載流子(zi)的(de)(de)激發-遷移-反(fan)應等(deng)環節,實現反(fan)應物種解離活化(hua)與H2/CO產率的(de)(de)倍數(shu)提升(sheng)(Journal of Catalysis,2022,413,829-842.)。
圖(tu)2載流子激發(fa)-遷移-反應強化機制
考(kao)慮到工業實(shi)際(ji)應(ying)(ying)用中,CO2/CH4氣體實(shi)際(ji)處理通(tong)量較大,而在(zai)(zai)大通(tong)量處理條件下(xia),現(xian)(xian)有的(de)(de)(de)(de)(de)多數催(cui)化(hua)(hua)劑(ji)在(zai)(zai)完成(cheng)CH4/CO2重(zhong)整(zheng)制合成(cheng)氣反(fan)(fan)應(ying)(ying)過(guo)程中,又會出現(xian)(xian)單(dan)程轉(zhuan)化(hua)(hua)率(lv)低(di)、積碳(tan)失活現(xian)(xian)象加劇等問(wen)題(ti)。課題(ti)組(zu)分析發現(xian)(xian)其動力(li)學(xue)受(shou)限(轉(zhuan)化(hua)(hua)率(lv)低(di))的(de)(de)(de)(de)(de)主(zhu)要問(wen)題(ti)在(zai)(zai)于CH4分解(jie)的(de)(de)(de)(de)(de)第一個C-H鍵(jian)斷裂困難(nan);而在(zai)(zai)穩定(ding)性(xing)方面(mian)(mian),過(guo)度(du)的(de)(de)(de)(de)(de)CH4解(jie)離能(neng)力(li)則會導致表(biao)面(mian)(mian)C*物種生成(cheng)累積并(bing)覆蓋活性(xing)位(wei)(wei)點,從(cong)而影響金(jin)(jin)屬位(wei)(wei)點進(jin)(jin)(jin)一步活化(hua)(hua)反(fan)(fan)應(ying)(ying)物。針對(dui)上述問(wen)題(ti),課題(ti)組(zu)采用(1)強(qiang)化(hua)(hua)金(jin)(jin)屬位(wei)(wei)點向C-H反(fan)(fan)鍵(jian)軌(gui)道的(de)(de)(de)(de)(de)電(dian)子(zi)(zi)捐獻過(guo)程(光(guang)譜誘導的(de)(de)(de)(de)(de)光(guang)電(dian)子(zi)(zi)-熱電(dian)子(zi)(zi)共同(tong)促(cu)進(jin)(jin)(jin)),同(tong)時(shi)(shi)將活性(xing)金(jin)(jin)屬制備至單(dan)原(yuan)子(zi)(zi)尺度(du),利用單(dan)原(yuan)子(zi)(zi)催(cui)化(hua)(hua)材料的(de)(de)(de)(de)(de)高(gao)表(biao)面(mian)(mian)能(neng)強(qiang)化(hua)(hua)反(fan)(fan)應(ying)(ying)物CH4的(de)(de)(de)(de)(de)高(gao)效(xiao)解(jie)離,實(shi)現(xian)(xian)CH4/CO2重(zhong)整(zheng)反(fan)(fan)應(ying)(ying)單(dan)程轉(zhuan)化(hua)(hua)率(lv)的(de)(de)(de)(de)(de)提升。(2)利用堿性(xing)金(jin)(jin)屬元素摻雜(za)強(qiang)化(hua)(hua)表(biao)面(mian)(mian)CO2化(hua)(hua)學(xue)吸附,從(cong)而促(cu)進(jin)(jin)(jin)反(fan)(fan)向歧化(hua)(hua)反(fan)(fan)應(ying)(ying)的(de)(de)(de)(de)(de)進(jin)(jin)(jin)行;利用CeO2載(zai)體的(de)(de)(de)(de)(de)晶格氧(yang)遷移能(neng)力(li),促(cu)進(jin)(jin)(jin)晶格氧(yang)與表(biao)面(mian)(mian)積碳(tan)的(de)(de)(de)(de)(de)氣化(hua)(hua)反(fan)(fan)應(ying)(ying),以(yi)此消除催(cui)化(hua)(hua)劑(ji)表(biao)面(mian)(mian)的(de)(de)(de)(de)(de)積碳(tan)現(xian)(xian)象,從(cong)而提升催(cui)化(hua)(hua)材料在(zai)(zai)大通(tong)量處理條件下(xia)的(de)(de)(de)(de)(de)長久穩定(ding)運行能(neng)力(li)。據此策略,課題(ti)組(zu)報道的(de)(de)(de)(de)(de)Ru基/CeO2光(guang)熱協同(tong)催(cui)化(hua)(hua)材料,獲得(de)了優異的(de)(de)(de)(de)(de)CH4/CO2催(cui)化(hua)(hua)活性(xing)(>1.2 mol·gcat-1·h-1),且性(xing)能(neng)穩定(ding)運行超100小時(shi)(shi)(Nano Energy,2024,123,109401)。
最后(hou),課(ke)題組基于CH4/CO2重整(zheng)反(fan)應(ying)(ying)的研究成果,也將光熱協同催(cui)(cui)化(hua)材(cai)料設計理(li)念,進(jin)一步推廣至CO2加氫還原、費托合成等不同反(fan)應(ying)(ying)體系,均大幅(fu)提(ti)升了催(cui)(cui)化(hua)反(fan)應(ying)(ying)活(huo)性,顯示出光熱協同催(cui)(cui)化(hua)在(zai)全光譜太陽能光熱化(hua)學(xue)轉化(hua)過程強化(hua)的普(pu)適性(Journal of Catalysis,2024,430,115303;Nano Research,2024,17,7945–7956)。
研究成果2.光熱CO2/CH4反應機理與動力學特性
光(guang)熱協同(tong)條件下的(de)(de)CO2/CH4反(fan)應(ying)(ying)機(ji)理方面(mian),課題組(zu)采用(yong)原位(wei)DRIFTS/XPS/Raman等(deng)技術,全面(mian)剖(pou)析(xi)了金(jin)屬/CeO2催(cui)化(hua)體系下的(de)(de)CO2/CH4重(zhong)整全反(fan)應(ying)(ying)路(lu)(lu)徑分(fen)析(xi),以及(ji)高(gao)能(neng)光(guang)子(zi)對特定基元反(fan)應(ying)(ying)步驟的(de)(de)強(qiang)(qiang)化(hua)機(ji)制(zhi)。課題組(zu)發現(xian)反(fan)應(ying)(ying)產物(wu)中的(de)(de)H2與(yu)(yu)(yu)H2O的(de)(de)生成(cheng)路(lu)(lu)徑幾乎均由(you)L-H機(ji)理控(kong)(kong)制(zhi),高(gao)能(neng)光(guang)子(zi)引(yin)入(ru)會(hui)通過(guo)(guo)強(qiang)(qiang)化(hua)CH4在Ru位(wei)點上(shang)解離的(de)(de)形式提高(gao)表面(mian)H*物(wu)種(zhong)濃度從(cong)而(er)(er)顯著促進H2的(de)(de)生成(cheng)路(lu)(lu)徑。此外,CO的(de)(de)生成(cheng)路(lu)(lu)徑則同(tong)時(shi)受(shou)到L-H、MvK與(yu)(yu)(yu)E-R三種(zhong)機(ji)理控(kong)(kong)制(zhi),其(qi)中L-H與(yu)(yu)(yu)E-R機(ji)理同(tong)時(shi)被CH4解離產生的(de)(de)H溢(yi)流效應(ying)(ying)與(yu)(yu)(yu)CO2吸附作用(yong)所影響(xiang),生成(cheng)COOH*物(wu)種(zhong)后(hou)進一(yi)步生成(cheng)CO*與(yu)(yu)(yu)OH*,因此以L-H或E-R機(ji)理引(yin)起(qi)的(de)(de)CO生成(cheng)會(hui)降低DRM反(fan)應(ying)(ying)的(de)(de)選擇(ze)性(xing)(Molecular Catalysis,2023,535,112828.;Journal of Colloid and Interface Science,2025,677,863-872)。同(tong)時(shi),以MvK機(ji)理控(kong)(kong)制(zhi)的(de)(de)CO生成(cheng)路(lu)(lu)徑會(hui)引(yin)起(qi)Ru-O-Ce與(yu)(yu)(yu)Ru-Ov-Ce界(jie)面(mian)結構的(de)(de)可逆動態衍(yan)變,而(er)(er)高(gao)能(neng)光(guang)子(zi)輻照(zhao)會(hui)強(qiang)(qiang)化(hua)晶格(ge)氧(yang)的(de)(de)溢(yi)出與(yu)(yu)(yu)補充(chong)過(guo)(guo)程,強(qiang)(qiang)化(hua)催(cui)化(hua)劑對CH4/CO2的(de)(de)活(huo)化(hua)過(guo)(guo)程,并通過(guo)(guo)強(qiang)(qiang)化(hua)表面(mian)H*物(wu)種(zhong)的(de)(de)產生而(er)(er)加(jia)速所有H*物(wu)種(zhong)參與(yu)(yu)(yu)的(de)(de)基元反(fan)應(ying)(ying)步驟。
圖(tu)3光熱(re)協同催化二(er)氧化碳干(gan)重整(zheng)基元反應機理
在此(ci)基(ji)礎上,課題組提出(chu)了(le)(le)(le)反(fan)(fan)應(ying)活(huo)化(hua)(hua)能(neng)及(ji)活(huo)化(hua)(hua)熵與入射高(gao)能(neng)光(guang)子的線性依變(bian)關(guan)系,并(bing)從經典Langmuir-Hinshelwood模(mo)型(xing)出(chu)發(fa),推(tui)導構(gou)建出(chu)全光(guang)譜驅(qu)動(dong)的多因(yin)素(su)依賴光(guang)熱(re)(re)協同催(cui)化(hua)(hua)CO2/CH4干重整(zheng)反(fan)(fan)應(ying)動(dong)力(li)(li)學模(mo)型(xing),指(zhi)出(chu)了(le)(le)(le)高(gao)能(neng)光(guang)子強化(hua)(hua)反(fan)(fan)應(ying)倍率隨溫度的指(zhi)數衰減關(guan)系,并(bing)揭示(shi)光(guang)強/光(guang)譜/溫度/分壓對(dui)反(fan)(fan)應(ying)特性的影響機(ji)制(zhi)(zhi)(AIChE J.2024;e18433)。同時,課題組也(ye)完成(cheng)了(le)(le)(le)負載型(xing)多孔催(cui)化(hua)(hua)活(huo)性吸收體(ti)動(dong)力(li)(li)學特性機(ji)制(zhi)(zhi)研究(jiu),系統(tong)揭示(shi)了(le)(le)(le)吸收體(ti)結構(gou)與熱(re)(re)質傳遞(di)-反(fan)(fan)應(ying)的耦合(he)(he)作用機(ji)制(zhi)(zhi),并(bing)基(ji)于平推(tui)流反(fan)(fan)應(ying)模(mo)型(xing),采用遺傳算(suan)法(fa)耦合(he)(he)非線性最小二乘算(suan)法(fa),獲得(de)了(le)(le)(le)工程應(ying)用的多孔活(huo)性吸收體(ti)宏(hong)觀反(fan)(fan)應(ying)動(dong)力(li)(li)學模(mo)型(xing),甲烷(wan)轉(zhuan)化(hua)(hua)率平均(jun)相對(dui)誤差(cha)2.6%,二氧化(hua)(hua)碳轉(zhuan)化(hua)(hua)率平均(jun)相對(dui)誤差(cha)4.7%,為(wei)太陽能(neng)甲烷(wan)干重整(zheng)光(guang)熱(re)(re)反(fan)(fan)應(ying)器的設計及(ji)優(you)化(hua)(hua)提供(gong)動(dong)力(li)(li)學模(mo)型(xing)基(ji)礎(Chemical Engineering Science,2021,239:116625.)。
研究成果3:光熱反應器多物理場耦合設計與過程強化研究
聚(ju)光(guang)/集熱(re)反(fan)(fan)應器是太陽能(neng)驅動光(guang)熱(re)化(hua)學轉化(hua)的關鍵反(fan)(fan)應場所,其結構、性(xing)能(neng)設計優化(hua)也是進一步提高太陽能(neng)光(guang)熱(re)化(hua)學反(fan)(fan)應物(wu)質(zhi)、能(neng)量轉化(hua)效率的重要途徑。
針對太陽能(neng)(neng)驅動(dong)的(de)(de)(de)光(guang)熱(re)(re)反應(ying)器(qi)內部的(de)(de)(de)多物理場(chang)耦合問題(ti),課題(ti)組(zu)通過(guo)構建MCRT太陽輻射光(guang)學(xue)模(mo)型,并耦合反應(ying)器(qi)內熱(re)(re)質傳遞計算(suan)流體動(dong)力學(xue)與反應(ying)動(dong)力學(xue)模(mo)型,實現(xian)了適用于(yu)太陽能(neng)(neng)光(guang)熱(re)(re)化(hua)學(xue)轉(zhuan)化(hua)的(de)(de)(de)一體化(hua)光(guang)學(xue)反應(ying)器(qi)設計方法構建,并完(wan)成了反應(ying)器(qi)結(jie)構-性能(neng)(neng)關(guan)聯機制研(yan)究。基于(yu)此方法,重點分(fen)析(xi)了過(guo)渡(du)段(duan)傾(qing)角、長度,CPC截取(qu)比(bi)、接收半角等結(jie)構參(can)數對反應(ying)器(qi)性能(neng)(neng)的(de)(de)(de)影響(xiang)(xiang)機制,并發(fa)現(xian)了太陽能(neng)(neng)光(guang)熱(re)(re)反應(ying)器(qi)區別于(yu)傳統反應(ying)器(qi)的(de)(de)(de)光(guang)子(zi)能(neng)(neng)流密度分(fen)布(bu)與結(jie)構型式的(de)(de)(de)高敏感度關(guan)聯作用,結(jie)構參(can)數的(de)(de)(de)微小變化(hua),即(ji)會顯(xian)著影響(xiang)(xiang)光(guang)子(zi)能(neng)(neng)流密度分(fen)布(bu)在(zai)反應(ying)器(qi)內部的(de)(de)(de)分(fen)布(bu)特性,從而大幅(fu)影響(xiang)(xiang)能(neng)(neng)量物質的(de)(de)(de)轉(zhuan)化(hua)特性(Chemical Engineering Journal,2022,428:131441.)。
為了實現光(guang)(guang)(guang)熱(re)化(hua)學反(fan)應(ying)器(qi)性能(neng)(neng)(neng)的(de)(de)進一(yi)步提(ti)升(sheng),課題組(zu)也針對反(fan)應(ying)器(qi)內部(bu)的(de)(de)能(neng)(neng)(neng)流(liu)供(gong)給(gei)與反(fan)應(ying)需求匹配(pei)(pei)特性,提(ti)出了系(xi)列反(fan)應(ying)特性的(de)(de)過程強(qiang)化(hua)調(diao)控策(ce)略。針對聚光(guang)(guang)(guang)固載型腔體式反(fan)應(ying)器(qi),提(ti)出梯級孔(kong)(kong)變(bian)隙耦合變(bian)孔(kong)(kong)徑(jing)結(jie)(jie)構(gou),利(li)用孔(kong)(kong)徑(jing)“大(da)(da)小(xiao)漸變(bian)”結(jie)(jie)構(gou)的(de)(de)輻射“體吸收效(xiao)應(ying)”與孔(kong)(kong)隙率“遞增(zeng)結(jie)(jie)構(gou)”的(de)(de)“局(ju)部(bu)對流(liu)/導(dao)熱(re)強(qiang)化(hua)”效(xiao)應(ying),改善(shan)輻射吸收以(yi)及能(neng)(neng)(neng)量(liang)轉(zhuan)(zhuan)化(hua)效(xiao)率,實現反(fan)應(ying)器(qi)集熱(re)效(xiao)率提(ti)升(sheng)。通過改進多孔(kong)(kong)活性吸收體幾何(he)結(jie)(jie)構(gou)及物料進氣方(fang)式(圓環柱形(xing)至圓柱形(xing)),實現反(fan)應(ying)物料流(liu)動方(fang)式的(de)(de)定向設計,延(yan)長停留時間,大(da)(da)幅增(zeng)加CH4/CO2轉(zhuan)(zhuan)化(hua)率,及CO/H2產(chan)率(CO2轉(zhuan)(zhuan)化(hua)率27.21%增(zeng)至79.4%,CO產(chan)率12.79 mol/h增(zeng)至35.44 mol/h)。針對太(tai)(tai)陽能(neng)(neng)(neng)光(guang)(guang)(guang)熱(re)化(hua)學轉(zhuan)(zhuan)化(hua)系(xi)統的(de)(de)非穩(wen)(wen)態(tai)變(bian)工(gong)況能(neng)(neng)(neng)量(liang)輸入(ru)特性,提(ti)出動態(tai)物料供(gong)給(gei)調(diao)控策(ce)略,在實現輸入(ru)能(neng)(neng)(neng)流(liu)最大(da)(da)化(hua)的(de)(de)同(tong)時,保(bao)證(zheng)(zheng)輸入(ru)能(neng)(neng)(neng)量(liang)與物料供(gong)給(gei)的(de)(de)時間分(fen)布特性匹配(pei)(pei),進一(yi)步提(ti)升(sheng)非穩(wen)(wen)態(tai)變(bian)工(gong)況太(tai)(tai)陽能(neng)(neng)(neng)光(guang)(guang)(guang)熱(re)化(hua)學轉(zhuan)(zhuan)化(hua)系(xi)統的(de)(de)物質-能(neng)(neng)(neng)量(liang)轉(zhuan)(zhuan)化(hua)效(xiao)率(太(tai)(tai)陽能(neng)(neng)(neng)-化(hua)學能(neng)(neng)(neng)轉(zhuan)(zhuan)化(hua)效(xiao)率最大(da)(da)增(zeng)幅可接(jie)近100%,Energy,2018,164:937-950.)。太(tai)(tai)陽能(neng)(neng)(neng)光(guang)(guang)(guang)熱(re)化(hua)學轉(zhuan)(zhuan)換(huan)過程中能(neng)(neng)(neng)量(liang)傳遞與轉(zhuan)(zhuan)化(hua)調(diao)控策(ce)略的(de)(de)發展,為保(bao)證(zheng)(zheng)太(tai)(tai)陽能(neng)(neng)(neng)到(dao)化(hua)學能(neng)(neng)(neng)的(de)(de)經(jing)濟高(gao)效(xiao)轉(zhuan)(zhuan)化(hua)與系(xi)統的(de)(de)安(an)全穩(wen)(wen)定運(yun)行(xing)提(ti)供(gong)重要理(li)論(lun)支(zhi)撐(cheng)。
圖4一(yi)體(ti)化光熱(re)(re)反應器設計方法及太陽能光熱(re)(re)化學轉換能量(liang)轉化調控策略
總結與展望
課題(ti)組近年來主要研(yan)究(jiu)重(zhong)點(dian)均集中在太(tai)陽(yang)(yang)能驅動的(de)光熱(re)化(hua)(hua)學反(fan)應的(de)能質轉化(hua)(hua)機理與(yu)催化(hua)(hua)體(ti)系(xi)構筑、全光譜驅動的(de)光熱(re)協同反(fan)應動力(li)學特(te)性(xing)研(yan)究(jiu)、以及太(tai)陽(yang)(yang)能直(zhi)接驅動的(de)新型(xing)光熱(re)化(hua)(hua)學反(fan)應裝置設計與(yu)優化(hua)(hua)等(deng)方(fang)面,有關(guan)的(de)反(fan)應體(ti)系(xi)涉(she)及到CO2/CH4干重(zhong)整制(zhi)合成氣、CO2加(jia)氫(qing)還(huan)原制(zhi)備C1化(hua)(hua)學品、太(tai)陽(yang)(yang)能光熱(re)化(hua)(hua)學制(zhi)氫(qing)等(deng)。這其中,進一步(bu)的(de)工作難(nan)點(dian)與(yu)重(zhong)點(dian)則是在實(shi)驗室(shi)研(yan)究(jiu)基礎之上,將(jiang)太(tai)陽(yang)(yang)能光熱(re)化(hua)(hua)學轉化(hua)(hua)體(ti)系(xi)放大至(zhi)小試乃至(zhi)中試示范規模,并實(shi)現較(jiao)長時間的(de)穩(wen)定(ding)運(yun)行。課題(ti)組也歡(huan)迎各位同仁不吝指導、相(xiang)互交流,促進相(xiang)關(guan)領(ling)域的(de)進一步(bu)發展。
論文信息
[1]Tao Xie,Kai-Di Xu;Ya-Ling He;Kun Wang,Bo-Lun Yang.Thermodynamic and kinetic analysis of an integrated solar thermochemical energy storage system for dry-reforming of methane.Energy,2018,164:937-950.
[2]Tao Xie,Kai-Di Xu;Bo-Lun Yang;Ya-Ling He.Effect of pore size and porosity distribution on radiation absorption and thermal performance of porous solar energy absorber.Science China Technological Sciences,2019,62:2213-2225.
[3]Tao Xie,Hao-Ye Zheng,Kai-Di Xu,Zhen-Yu Zhang,Bo-Lun Yang,Bo Yu.High performance Ni-based porous catalytically activated absorbers and establishment of kinetic model for complex solar methane dry reforming reaction system.Chemical Engineering Science,2021,239:116625.(DOI:10.1016/j.ces.2021.116625;WOS:000649712400002)
[4]Hao-Ye Zheng,Zhen-Yu Zhang,Kai-Di Xu,Sheng Wang,Bo Yu,Tao Xie.Analysis of structure-induced performance in photothermal methane dry reforming reactor with coupled optics-CFD modeling.Chemical Engineering Journal,2022,428:131441.
[5]Tao Xie,Zhen-Yu Zhang,Hao-Ye Zheng,Kai-Di Xu,Zhun Hu,Yu Lei.Enhanced photothermal catalytic performance of dry reforming of methane over Ni/mesoporous TiO2 composite catalyst.Chemical Engineering Journal,2022,429:132507.
[6]Zhen-Yu Zhang,Tao Zhang,Wen-Peng Liang,Pan-Wei Bai,Hao-Ye Zheng,Yu Lei,Zhun Hu,Tao Xie*.Promoted solar-driven methane dry reforming of methane with Pt/mesoporous-TiO2 photo-thermal synergistic catalyst:performance and mechanism study.Energy Conversion and Management,2022,258 115496.
[7]Zhen-Yu Zhang,Tao Zhang,Rui-Kun Wang,Bo Yu,Zi-Yu Tang,Hao-Ye Zheng,Dan He,Tao Xie1*,Zhun Hu2*.Photo-enhanced dry reforming of methane over Pt-Au/P25 composite catalyst by coupling plasmonic effect.Journal of Catalysis,2022,413,829-842.
[8]Zhen-Yu Zhang,Ting Li,Ji-Long Yao,Tao Xie*,Qi Xiao.Mechanism and kinetic characteristics of photo-thermal dry reforming of methane on Pt/mesoporous-TiO2 catalyst.Molecular Catalysis,2023,535,112828.
[9]Tao Xie*,Zhen-Yu Zhang,Hao-Ye Zheng,Bo Yu,Qi Xiao.Performance optimization of a cavity type concentrated solar reactor for methane dry reforming reaction with coupled optics-CFD modeling.Chemical Engineering Science,2023,275,118737.
[10]Zhen-Yu Zhang,Ting Li,Zi-Yu Tang,Dan He,Jun-Jie Tian,Jia-You Chen,Tao Xie*.Deep insight of the influence of Pt loading content with catalytic activity on light-assisted dry reforming of methane.Chemical Engineering Science,2023,274,118710.
[11]Ji-Long Yao,Hao-Ye Zheng,Pan-Wei Bai,Zhen-Yu Zhang,Ting Li,Tao Xie*.Design and optimization of solar-dish volumetric reactor for methane dry reforming process with three-dimensional optics-CFD method.Energy Conversion and Management,2023,277,116663.
[12]Zhen-Yu Zhang,Ting Li,Xia-Li Sun,De-Cun Luo,Ji-Long Yao,Gui-Dong Yang,Tao Xie*.Efficient photo-thermal catalytic CO2 methanation and dynamic structural evolution over Ru/Mg-CeO2 single-atom catalyst.Journal of Catalysis,2024,430,115303.
[13]Zhen-Yu Zhang,Zhen-Xiong Huang,Xi-Yang Yu,Lei Chen,Hong-Hui Ou,Zi-Yu Tang,Ting Li,Bo-Yu Xu,Ya-Ling He,Tao Xie*.Photo-thermal coupled single-atom catalysis boosting dry reforming of methane beyond thermodynamic limits over high equivalent flow.Nano Energy,2024,123,109401.
[14]Ji-Long Yao,Zhen-Yu Zhang,Ting Li,Pan-Wei Bai,Wen-Peng Liang,Tao Xie*.Establishment of light-dependent photo-thermal kinetic model for MDR and performance optimization in a cavity reactor.AIChE J.2024;e18433.
[15]Ting Li,Zhen-Yu Zhang,De-Cun Luo,Bo-Yu Xu,Rong-Jiang Zhang,Ji-Long Yao,Dan Li,Tao Xie*.Highly efficient photo-thermal synergistic catalysis of CO2 methanation over La1?xCexNiO3 perovskite-catalyst.Nano Research,2024,17,7945–7956.
[16]Zhen-Yu Zhang,Tao Xie*.In situ DRIFTs-based comprehensive reaction mechanism of photo-thermal synergetic catalysis for dry reforming of methane over Ru-CeO2 catalyst.Journal of Colloid and Interface Science,2025,677,863-872.
作者介紹
謝濤,西(xi)安交(jiao)通大學(xue)(xue)(xue)(xue)(xue)(xue)化學(xue)(xue)(xue)(xue)(xue)(xue)工(gong)程與(yu)(yu)技術學(xue)(xue)(xue)(xue)(xue)(xue)院,副教授,博士生導(dao)師。2005-2009年(nian)(nian),就(jiu)讀(du)西(xi)安交(jiao)通大學(xue)(xue)(xue)(xue)(xue)(xue),獲學(xue)(xue)(xue)(xue)(xue)(xue)士學(xue)(xue)(xue)(xue)(xue)(xue)位。2009-2015年(nian)(nian),就(jiu)讀(du)西(xi)安交(jiao)通大學(xue)(xue)(xue)(xue)(xue)(xue),獲動力工(gong)程及(ji)工(gong)程熱物理(li)博士學(xue)(xue)(xue)(xue)(xue)(xue)位。2015年(nian)(nian)博士畢業,進入(ru)化學(xue)(xue)(xue)(xue)(xue)(xue)工(gong)程與(yu)(yu)技術學(xue)(xue)(xue)(xue)(xue)(xue)院,開(kai)展(zhan)太陽能(neng)光-熱-化學(xue)(xue)(xue)(xue)(xue)(xue)轉化過程以及(ji)熱質傳遞轉化規律的理(li)論(lun)與(yu)(yu)實驗相關研究工(gong)作。2016-2017年(nian)(nian),在美國(guo)圣路易(yi)斯華(hua)盛頓大學(xue)(xue)(xue)(xue)(xue)(xue)訪學(xue)(xue)(xue)(xue)(xue)(xue)交(jiao)流。現任工(gong)業催化研究所副所長,獲唐仲英基金會仲英青(qing)年(nian)(nian)學(xue)(xue)(xue)(xue)(xue)(xue)者(zhe),陜西(xi)省優秀博士學(xue)(xue)(xue)(xue)(xue)(xue)位論(lun)文(wen),吳仲華(hua)優秀研究生獎等榮譽(yu)。以項(xiang)目(mu)(mu)負責人,主(zhu)持國(guo)家重點研發計劃項(xiang)目(mu)(mu)子課題(ti)1項(xiang),國(guo)家自(zi)然科學(xue)(xue)(xue)(xue)(xue)(xue)基金面上/青(qing)年(nian)(nian)項(xiang)目(mu)(mu)3項(xiang),其他(ta)軍工(gong)/省部級項(xiang)目(mu)(mu)7項(xiang);在Nano Energy、AIChE Journal、Energy Conversion and Management、Chemical Engineering Journal、Journal of Catalysis、Environmental Science&Technology等國(guo)際SCI期(qi)刊發表(biao)學(xue)(xue)(xue)(xue)(xue)(xue)術論(lun)文(wen)四十余篇(pian),其中ESI高被引(yin)論(lun)文(wen)2篇(pian),單篇(pian)最高SCI他(ta)引(yin)次數264。申請發明專利6件,授權4件。受邀在國(guo)內外學(xue)(xue)(xue)(xue)(xue)(xue)術會議做學(xue)(xue)(xue)(xue)(xue)(xue)術報告5次。
聯系方式:xietao_xjtu@xjtu.edu.cn